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Abstract
The appearance of unusual internal variables—phason degrees—in quasicrystals challenges the
traditional theory of condensed matter in macro- as well as in microscopy, especially for a
dynamic process. The elasto-/hydrodynamic model for quasicrystals is suggested and
investigated. With this model and the finite difference method the wave propagation and
diffusion and their interaction through a cracked sample are revealed in this study. Even though
the phason degrees of freedom present the diffusion nature according to the present model, this
influences the dynamic process greatly. The influences are different for dynamic initiation of
crack growth and fast crack propagation; for the latter the nonlinear effect—moving boundary
effect—is evident as well as the wave propagation effect, diffusion effect and phonon–phason
coupling effect.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quasicrystals as a new material possess unusual degrees of
freedom named ‘phason degrees of freedom’, which influence
many physical properties, in particular mechanical ones. The
degrees of freedom are described by a vector field with values
in an internal ‘orthogonal space’. A gradient of this field forms
the phason strain tensor describing atom local rearrangement,
which together with the conventional ‘phonon’ strain tensor
describing volume and shape change of a unit cell can be
incorporated into a generalized free energy of the elastic solid
containing phonon elastic constants, phason elastic constants
and phonon–phason coupling elastic constants.

Since the discovery of quasicrystals, almost all scholars
agree on the form of the generalized static elasticity theory,
but for the elasto-/hydrodynamic case there are different
theoretical points of view, e.g. those being put forward by
Bak [1, 2] and by Lubensky et al [3]. Both of their
arguments are in agreement with the deformation geometry and
generalized Hooke’s law; the difference between them lies in
the equations of motion. Ding et al [4], Fan et al [5–7], and
Li and Liu [8] followed Bak’s arguments, that is, both phonon

and phason describe wave propagation, i.e.

ρ
∂2ui

∂ t2
= ∂σi j

∂x j

ρ
∂2wi

∂ t2
= ∂ Hi j

∂x j

(1)

in which ui and wi are the phonon displacement vector
and phason displacement vector, σi j and Hi j are the phonon
stress tensor and phason stress tensor, and ρ is the mass
density of the material, respectively. Although they reviewed
the work of Lubensky et al, maybe they found that in this
version the discussion is easier and more beneficial to develop
an analytical solution for various boundary or boundary–
initial value problems. Rochal and Lorman [9] supported the
argument and suggested that in the second equation of (1) the
density ρ should be replaced by ρeff, where ρeff represents
the generalized effective phason density, but the meaning of
the quantity is not so clear and its measurement is difficult.
Afterwards in [10] they considered the argument of Lubensky
et al and suggested that people should compromise between
different models, e.g. those proposed by [3] and [4]. At present
not enough experimental data are available to examine each
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model. However, if we use the common features of different
models and find a simpler version for elasto-/hydrodynamics of
quasicrystals, then carry out systematic theoretical, numerical
and experimental work, this will be beneficial to promote
the study. Based on this idea Fan et al [11] suggested a
so-called elasto-/hydrodynamic model, and analytic solutions
for moving dislocations in some quasicrystalline systems are
achieved.

In the following sections, the elasto-/hydrodynamic
equations with equations of deformation geometry and
generalized Hooke’s law under appropriate boundary–initial
conditions are solved in terms of the finite difference
method. Numerical results for the problem of dynamic
initiation of crack growth and fast crack propagation are
given.

2. Elasto-/hydrodynamic equations and
boundary–initial conditions of two-dimensional
decagonal quasicrystals

Phonon strain components εi j and phason strain components
wi j are defined by

εi j = (∂ j ui + ∂i u j )/2, wi j = ∂ jwi ,

∂ j = ∂/∂x j

(2)

where ui and wi are phonon and phason displacement vectors,
respectively, as mentioned above.

According to Ding et al [4], phonon stress components σi j

and phason stress components Hi j have the following relation
with the corresponding strain components εi j and wi j , i.e. the
generalized Hooke’s law for quasicrystals:

σi j = Ci jklεkl + Ri jklwkl

Hi j = Ki jklwkl + Rkli j εkl

(3)

where Ci jkl and Ki jkl are the elastic constants of the phonon
and phason fields and Rkli j are the phonon–phason coupling
elastic constants, respectively. These elastic constants have
been derived by group representation theory.

Collaborating arguments of Bak and Lubensky et al, under
linear and small deformation, the equations of motion are

ρ
∂2ui

∂ t2
= ∂σi j

∂x j

κ
∂wi

∂ t
= ∂ Hi j

∂x j

(4)

in which ρ is the mass density, κ = 1/�w and the kinematic
coefficient �w of the phason field of the material is defined by
Lubensky et al [3].

It is obvious that the first equation of equation set (4)
is the equation of conventional elastodynamics, which is the
same as the first equation of equation set (1), while the second
one is the diffusion equation. The second equation of (4)
is a linear result of hydrodynamics of quasicrystals proposed
by Lubensky et al. The dynamic equation (4) should be
named the elasto-/hydrodynamic equations for quasicrystals,

which are identical to equations (5) of [10]. We believe this
treatment is more fundamental physically and harmonizes the
contradiction between the arguments of Bak and Lubensky
et al. It also harmonizes the contradiction between [4–8]
and [9], though they in common follow the framework of Bak’s
argument.

Among 200 kinds of quasicrystals observed to date, there
are 100 kinds of three-dimensional icosahedral quasicrystals
and 70 kinds of two-dimensional decagonal quasicrystals;
these two kinds of solid phases constitute the majority of the
material and play a central role. For simplicity, here only a two-
dimensional decagonal quasicrystal will be considered. We
denote the periodic direction as the z axis and the quasiperiodic
plane as the x–y plane. Assume that a Griffith crack penetrates
through the solid along the periodic direction, i.e. the z axis. It
is obvious that elastic field induced by a uniform tensile stress
at upper and lower surfaces of the specimen is independent of
z, so all field variables are independent of z, i.e., ∂/∂z = 0. In
this case, the stress–strain relations are reduced to

σxx = L(εxx + εyy) + 2Mεxx + R(wxx + wyy)

σyy = L(εxx + εyy) + 2Mεyy − R(wxx + wyy)

σxy = σyx = 2Mεxy + R(wyx − wxy)

Hxx = K1wxx + K2wyy + R(εxx − εyy)

Hyy = K1wyy + K2wxx + R(εxx − εyy)

Hxy = K1wxy − K2wyx − 2Rεxy

Hyx = K1wyx − K2wxy + 2Rεxy

(5)

where L = C12, M = (C11 − C12)/2 are the phonon elastic
constants, K1 and K2 are the phason elastic constants, and R
the phonon–phason coupling elastic constant.

Substituting (5) into (4), we obtain the equations of motion
of decagonal quasicrystals as follows:

∂2ux

∂ t2
+ θ

∂ux

∂ t
= c2

1

∂2ux

∂x2
+ (c2

1 − c2
2)

∂2uy

∂x ∂y
+ c2

2

∂2ux

∂y2

+ c2
3

(
∂2wx

∂x2
+ 2

∂2wy

∂x ∂y
− ∂2wx

∂y2

)

∂2uy

∂ t2
+ θ

∂uy

∂ t
= c2

2

∂2uy

∂x2
+ (c2

1 − c2
2)

∂2ux

∂x ∂y
+ c2

1

∂2uy

∂y2

+ c2
3

(
∂2wy

∂x2
− 2

∂2wx

∂x ∂y
− ∂2wy

∂y2

)

∂wx

∂ t
+ θwx = d2

1

(
∂2wx

∂x2
+ ∂2wx

∂y2

)

+ d2
2

(
∂2ux

∂x2
− 2

∂2uy

∂x ∂y
− ∂2ux

∂y2

)

∂wy

∂ t
+ θwy = d2

1

(
∂2wy

∂x2
+ ∂2wy

∂y2

)

+ d2
2

(
∂2uy

∂x2
+ 2

∂2ux

∂x ∂y
− ∂2uy

∂y2

)

(6)
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Figure 1. The specimen with a rest or propagating crack.

in which

c1 =
√

L + 2M

ρ
, c2 =

√
M

ρ
, c3 =

√
R

ρ
,

d1 =
√

K1

κ
, d2 =

√
R

κ
, d3 =

√
K2

κ
;

(7)

note that constants c1, c2 and c3 have the meaning of elastic
wave speeds, while d2

1 , d2
2 and d2

3 do not represent wave speed;
they are diffusive coefficients.

In equation (6), parameter θ may be understood as a
man-made damping coefficient; if it is equal to zero, they
obviously return to the dynamic state, whereas if θ > 0,
which successively is adjusted to an appropriate value, so that
the terms of the left-hand side of equation (6) are zero, then
we obtain the corresponding static solution, which can easily
be examined with well known solutions. If the examination
confirms that the scheme and computer program are correct
and of sufficient precision then we put θ = 0, and begin the
dynamic computation.

Consider a decagonal quasicrystal with a Griffith crack
shown in figure 1. It is a rectangular specimen with a central
crack of length 2a(t) subjected to a dynamic tensile stress at
its ends ED and FC, in which a(t) represents the crack length,
being a function of time in general. For dynamic initiation of
crack growth the crack is stable, so a(t) = a0 = constant,
while for fast crack propagation a(t) varies with time. At first
we consider dynamic initiation of crack growth, then study fast
crack propagation. Due to the symmetry of the specimen only
the upper right quarter is considered.

Referring to the upper right part and considering a fix
grips case, the following boundary conditions should be
satisfied (in the general case the tractions for phonon variables
and the generalized tractions for phason variables must be
simultaneously included in the boundary conditions; due to a
lack of measured data for the generalized tractions, the phason
stress boundary conditions are taken to be zero for simplicity):

ux = 0, σyx = 0, wx = 0, Hyx = 0

on x = 0 for 0 � y � H

σxx = 0, σyx = 0, Hxx = 0, Hyx = 0

on x = L for 0 � y � H

σyy = p(t), σxy = 0, Hyy = 0, Hxy = 0

on y = H for 0 � x � L

σyy = 0, σxy = 0, Hyy = 0, Hxy = 0

on y = 0 for 0 � x � a(t)

uy = 0, σxy = 0, wy = 0, Hxy = 0

on y = 0 for a(t) < x � L

(8)

in which p(t) is the dynamic load. In this paper p(t) =
p0 f (t), where f (t) is the Heaviside function and p0 = const
with the stress dimension.

The initial conditions are

ux(x, y, t)|t=0 = 0 uy(x, y, t)|t=0 = 0

wx(x, y, t)|t=0 = 0 wy(x, y, t)|t=0 = 0

∂ux(x, y, t)

∂ t

∣∣∣∣t=0 = 0
∂uy(x, y, t)

∂ t

∣∣∣∣t=0 = 0.

(9)

Through the constitutive equation (5), boundary condi-
tions (8) which involve stresses are expressed in terms of dis-
placements and their derivatives, so the final version of dif-
ferential equation (6) and both conditions (8) and (9) are ex-
pressed by the displacements.

For the related parameters in a decagonal Al–Ni–Co
quasicrystal, the experimentally measured data ρ = 4.186 ×
10−3 g mm−3 are used and elastic moduli are taken as C11 =
2.3430, C12 = 0.5741(1012 dyn cm−2), which are obtained by
resonant ultrasound spectroscopy [12]; we have also chosen
K1 = 1.22 and K2 = 0.24(1012 dyn cm−2) estimated by
Monte Carlo simulation [13] and �w = 1/κ = 4.8 ×
10−10 cm3 μs g−1 [14]. The coupling constant R has not been
measured so far. In computation we take R/M = 0.01 as the
coupling case corresponding to quasicrystals, and R/M = 0 as
the decoupled case, corresponding to crystals if simultaneously
K1 = 0, K2 = 0. In the following sections 3–6, H = 20 mm,
L = 10 mm and the crack initial length a0 = 2.4 mm.

3. Stability and accuracy of the finite difference
scheme

Equation (6) subjected to conditions (8) and (9) is very
complicated and an analytic solution for the boundary–initial
value problem is not available at present, which has to be
solved by the numerical method. Here we extend the finite
difference method of the Shmuely–Alterman [15] scheme for
analyzing the crack problem for conventional engineering
materials to quasicrystalline materials. There are also some
other numerical approaches to work out the problems; see [16].

A grid is imposed on the upper right of the specimen
shown in figure 2. For convenience, the mesh size (also
called the space step) h is taken to be the same in both
x and y directions. The grid is extended beyond the half
step by adding four special grid lines x = −h/2, x =
L + h/2, y = −h/2, y = H + h/2, which form the grid
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Figure 2. Scheme of the grid used.

boundaries. Denoting the time step by τ , central difference
approximations are used to discretize equations (6) and (9).
In constructing the difference of boundary conditions (8) we
follow a method proposed by Alterman and Rotenberg [17],
which was also successfully employed in [18, 19] of periodic
crystals. According to this method, derivatives perpendicular
to the boundary are proposed by non-central differences and
derivatives parallel to the boundary by a centered difference.
The real boundary can be considered to be located at a distance
of half the mesh size from the grid boundaries (see figure 2).
The detail of the finite difference scheme is omitted here to
save space.

In relation to the fourth equation of equation set (6), the
crack tip is confined to lie on the interval c − h/2 < x <

c + h/2, in which c denotes the distance from the y-axis to the
midpoint of the grid interval. As will become obvious later, any
assumption concerning the exact location of the crack tip has
no meaningful results or conclusions drawn from the numerical
solution. The only occasion where it may have any significance
is when comparing numerical and experimental results. In this
case, however, it is the complete crack length which counts,
so that any error introduced in locating the crack tip may
be approximately assumed as being located in the middle of
the above mentioned interval. By adhering to the assumption
(which means that the value of c may be identified with the
crack length a0), the error introduced in estimating the crack
length cannot exceed h/2. If, in addition, we refine the grid,
the relative error can be reduced to at least the same degree as
the expected experimental errors.

The stability of the algorithm is the core problem for the
computation, which depends upon the choice of parameter
α = c1τ/h, which is the ratio between time step and
space step substantively. The choice is related to the ratio
c1/c2, i.e. the ratio between speeds of elastic longitudinal and
transverse waves of the phonon field. To determine the upper
bound for the ratio to guarantee the stability, according to
our computational practice and considering the experiences
of computation for conventional materials [20], we choose
α = 0.8 in all cases.

The correctness of the algorithms can be easily proved via
the static solution first. As mentioned above, the numerical

solution tends to the static solution if θ (see equation (6)) is
taken as an appropriate value and the left-hand side of the
equations to be zero. After some trials, the value is 0.05/h.

In the following we first examine the physical model of
the study, otherwise all computations will lose their meaning.

4. Examination on the model and algorithm

In this section we further verify our model from the point of
view of mathematical physics. To verify the physical nature of
the model, we first compute an un-cracked specimen. We know
that there are fundamental solutions of pure wave equations
and pure diffusion equations in classical mathematical physics;
these solutions are ones in an infinite body, without initial
conditions and without boundary conditions, characterizing
time variation natures of wave propagation and diffusion,
respectively, so that these fundamental solutions cannot
describe wave reflection, diffraction caused by the finite
boundary and the coupling effect between phonons and
phasons and so on; they are as follows:

solutionwave ∼ eiω(t−x/c)

solutiondiffusion ∼ 1√
t − t0

e−(x−x0 )2/�w(t−t0)
(10)

where the frequency and speed of the wave are denoted by ω

and c, respectively. The solutions (10) provide a comparison
for checking the basic nature of wave propagation for phonons
and the basic nature of diffusion of phasons in the dynamic
process predicted by the basic equation (4).

The comparison between our numerical results and the
fundamental solution is given in figures 3(a)–(c), in which
the dotted line represents the numerical solutions of real
quasicrystals (i.e., the phonon and phason are coupled),
the solid line stands for the solutions of the ‘decoupled
quasicrystals’ and the dashed line corresponds to fundamental
solutions (10) of mathematical physics. We can see, from
figures 3(a) and (b), that both displacement components of
the phonon field are identical to the fundament solutions
and they demonstrate the wave propagation nature of phonon
variables. Nevertheless, some differentiation is shown in the
three curves of each picture, because the actual solutions
(i.e. the numerical solutions) are subjected to the initial and
boundary conditions, and influenced by the phonon–phason
coupling effect, so they can not completely be in agreement
with the fundamental solutions of mathematical physics. At
first, there is some dissimilarity between numerical solutions
(including numerical solutions of quasicrystals and numerical
solutions of ‘decoupled quasicrystals’) and the fundamental
solutions in the shape of the curves, as the former is
influenced by initial and boundary conditions, while the latter
is the solutions independent from any initial and boundary
conditions. In addition, we also find that the solutions of real
quasicrystals and solutions and ‘decoupled quasicrystals’ have
some distinctions caused by the coupling effect, though they
have similar shapes.

As for figure 3(c), in the phason field, the numerical
solution of real quasicrystals presents a diffusive nature in
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Figure 3. (a) Displacement component of phonon field ux versus
time. (b) Displacement component of phonon field uy versus time.
(c) Displacement component of phason field wx versus time.

the overall tendency. Nevertheless, because of the influence
of boundary conditions and the phonon and phonon–phason
coupling effect, it also has some character of fluctuation. In the

time interval between 5 and 10 μs, the numerical solution is a
good match with the fundamental solution, and the numerical
solution is a plateau in the time interval from 10 to 15 μs.
However, after 15 μs, the curve repeats the tendency in 5
to 15 μs. Due to the limitation of the computer, we just
draw up to 30 μs. Moreover, we observe that the numerical
solution of the phason of the ‘decoupled quasicrystals’ is equal
to zero, apparently different from the numerical solution of real
quasicrystals and the fundamental solution. This is reasonable,
since no other force (the generalized traction is assumed to be
zero) is imposed upon the boundary condition and the only
one comes from the coupling effect, without which the phason
displacement should be zero.

At the first time step there is evidence of a phase shift
between the quasicrystal solutions and the pure wave solution
of mathematical physics shown by figure 3; the reason for
this is that the specimen is a finite size sample: the wave
propagation from the upper or lower external boundary of
the specimen to the observed point needs time, which is less
than 1 μs. We also notice that the numerical solution of
displacements is constant up to about one minute. Because
the force on the boundary is impact loading, the displacements
increase or decrease sharply at about 1 μs when the wave from
the external boundary arrives at the point we refer to.

The new scheme we proposed should be tested for its
capability and accuracy. We can check the key physical
quantity—dynamic stress intensity factor (DSIF), whose
computational results can be compared with those of the
well known solutions. Keeping in mind that the available
experimental data in quasicrystals do not supply enough
information, in order to compare with numerical results, we
set the phonon–phason coupling constant R to be zero in
equation set (6), with R = 0 the first two equations of equation
set (6) are degenerated to the equations for crystals. The
various parameters of the specimen were chosen to enable at
least a qualitative and quantitative comparison with [21–23];
thus, the specimens were assumed to have c1 = 7.34, c2 =
3.92 (mm μs−1) and ρ = 5 × 103 kg m−3, p0 = 1 MPa.

The dynamic stress intensity factor KI(t) is defined by

KI(t) = lim
x→a+

0

√
π(x − a0)σyy(x, 0, t) (11)

and the normalized DSIF K̃I(t) = K I(t)/
√

πa0 p0 is used.
An overall comparison between the results obtained in

this paper and the classical analytic solution of Maue [21] and
two numerical solutions given by Murti [22] and Chen [23] is
plotted in figure 4. Maue’s solution is the only exact analytic
solution for crystal for dynamic initiation of crack growth so
far, which studied a semi-infinite crack in an infinite elastic
body, and the crack surface is subjected to the Heaviside
loading. The configuration of Maue’s problem is quite different
from that of our problem; so is the boundary conditions. The
differences are at least in three directions. (1) It is an infinite
body; our object is a finite size specimen. (2) Its crack is semi-
infinite; our crack is of finite size. (3) Its loading is subjected
to the crack surface, and the loading in our specimen is applied
at the external surface of the specimen. So Maue’s solution
cannot describe the stress wave propagation from the external

5
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Figure 4. Normalized SIF versus time for crystals.

boundary of the finite size specimen, and cannot describe any
interaction between the wave and external boundary, i.e. it can
be used for our finite size specimen only in a very short time
interval, during the period between the stress wave from the
external boundary arriving at the crack tip (the time is denoted
by t1 = 2.7248 μs see figure 4) and before the reflection by
the external boundary stress wave emanating from the crack
tip in a finite size specimen (this time is marked by t2, refer
to figure 4, whose value is equal to t2 ≈ 4.1 μs). During
this special very short time interval our specimen can be seen
as an ‘infinite specimen’. The comparison shows that our
solution is in good agreement with Maue’s solution within its
validity period. From the overall tendency, the solution in this
paper is in agreement with the numerical Murti’s solution and
Chen’s solution too. However, there naturally are also some
differences.

The comparison of our numerical solutions in the case
without phason field with those of the well known classi-
cal analytic solution (Maue’s solution) and numerical solu-
tions (Murti’s solution and Chen’s solution) demonstrates that
the finite difference method in the present study is a capa-
ble and reliable method. It is understandable that there are
some small differences between the different numerical solu-
tions, because they are all approximate solutions. This pre-
dicts that our method is a powerful one for solving problems of
elasto-/hydrodynamics and fracture dynamics of quasicrys-
talline materials.

5. Results of dynamic initiation of crack growth

In dynamic fracture theory, there are two kinds of problems:
dynamic initiation of crack growth and fast crack propagation.
Sometimes one says these are two ‘phases’ of the problem.
With regard to dynamic initiation of crack growth, the length of
the crack is constant, assuming a(t) = a0. The specimens with
a stationary crack are subjected to a rapidly varying applied
load p(t) = p0 f (t), where f (t) is taken as the Heaviside
function. It is well known the coupling effect between phonon
and phason is very important, which reveals the distinctive
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Figure 5. Normalized SIF versus time.

physical properties including mechanical properties, and
distinguishes quasicrystals from periodic crystals. So studying
the coupling effect is significant.

In equation (6), by letting θ be equal to zero we obviously
return to the dynamic state, whereas if θ > 0 there are
successive changes in displacements, converging finally to the
static solution. The accuracy of the numerical scheme is
checked via the static result.

There are four lines in figure 5: two straight lines,
consisting of the numerical solution and the theoretical
solution, representing the static ones of the quasicrystals, and
the other are two curved lines, including quasicrystals and
crystals, symbolizing the dynamic state. Concerning the static
numerical stress intensity factor, K̃ (static) = 0.9418, the error
is 0.058 in contrast to the theoretical solution [24]. As to the
dynamic solution shown in figure 5, we can see from the figure
that the normalized DSIF of quasicrystals is evidently larger
than that of crystals, though they are similar to some extent. We
believe that the phason and phonon–phason coupling effects
give rise to the fact that the DSIF of quasicrystals is big and
this results in the mechanical properties of the quasicrystals
being obviously different from those of conventional crystals.
This also reveals that the effects of phason and phonon–phason
coupling in the dynamic process are much stronger than those
in the static process.

In figure 5, t0 represents the time in which the wave from
the external boundary propagates to the crack surface, where
t0 = 2.6735 μs. So the velocity of the wave propagation
is ν = H/t0 = 7.4807 km s−1, which is just equal to the
longitudinal wave speed c1 = √

(L + 2M)/ρ. This indicates
that for the complex system of wave propagation and diffusion
coupling, the phonon wave propagation plays a dominating
role. At the moment that the wave arrives at the surface of
the crack, because the dynamic load is an impacting force
which produces a tensile wave, the DSIF increases sharply to
the maximum. Then the DSIF steps into a smoother stage for
period of time, and it starts to decrease steeply at about 8 μs,
until at about 11 μs the DSIF drops to and below zero, because
the tensile wave becomes a compressive wave, which yields
the surface of the crack closing.
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Figure 6. The average velocity of crack propagation versus time.

There are many oscillations in the figure, especially the
dynamic stress intensity factor. These oscillations characterize
the reflection and diffraction between waves coming from the
crack surface and the sample’s boundary surfaces. Meanwhile,
these oscillations are greatly influenced by the material
constants and specimen geometry, including the shape and
sizes. Since the damping is ignored in the calculation, it has
no effect on the oscillations.

Because current work in dynamic fracture mechanics
is primarily based upon the assumption of linear elastic
material behavior, the DSIF KI(t) defined in equation (11)
is meaningful only for linear elastic homogeneous (although
not necessarily isotropic) materials which exhibit the r−1/2

singularity at the tip of a sharp crack. With the calculated KI(t)
and an experimentally determined critical value of KI(t) that is
a material constant, we can set up a criterion for the dynamic
initiation of crack growth, i.e.,

KI(t) = KId(σ̇ , T ) (12)

where KId(σ̇ , T ) is the so-called critical value of KI(t) and
is named the dynamic fracture toughness, which is dependent
upon the loading rate σ̇ and test temperature T . The DSIF
is a computed quantity which does not represent the property
of brittleness of the material. Of course, the brittleness of
quasicrystals is indeed greater than that of crystals.

6. Preliminary results of the fast crack propagation

In this section, we focus on the discussion for the ‘phase’ of
fast crack propagation. To explore the inertia effect caused by
the fast crack propagation, the specimen is designed under the
action of constant load p(t) = p0 rather than time varying
load, but the crack grows with high speed in this case. The
problem for fast crack propagation is a nonlinear problem,
because one part of the boundaries—the crack—has unknown
length beforehand; for this moving boundary problem, we must
give additional condition for determining the solution. That is,
we must give a criterion checking crack propagation or crack
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Figure 7. Variation of average velocity versus crack growth size for
different load levels.

arrest at the growing crack tip. There are different methods,
e.g. the critical stress criterion or critical energy criterion. The
stress criterion is used in this paper: σyy < σc represents crack
arrest, σyy = σc represents the critical state and σyy > σc

represents crack propagation. The simulation of a fracturing
process runs as follows.

Given the specimen geometry and its material constants
we first solve the initial dynamic problem in the way previously
described. When the stress σyy reaches a prescribed critical
value σc the crack is extended by one grid interval. The crack
now continues to grow, by one grid interval at a time, as long as
the σyy stress level ahead of the propagating crack tip reaches
the value of σc. During the propagation stage the time that
elapses between two sequential extensions is recorded and the
corresponding velocity is evaluated.

Keeping the same material constants as mentioned in
section 2, the sample size in this section is H = 20, L =
50, a0 = 1.2 (mm).

Firstly, we explored the average crack propagating
velocity of quasicrystals and periodic crystals shown in
figure 6. Assume the critical stress of quasicrystals
σ

q
c ≈ 450 MPa (for the decagonal Al–Ni–Co quasicrystal

approximately, obtained by comparing the hardness of
decagonal Al–Cu–Co and Al–Ni–Co quasicrystals) and that
of crystals σ c

c ≈ 550 MPa approximately (the critical stress
of quasicrystals is smaller than that of crystals because the
brittleness of quasicrystals is greater than that of crystals; for
some details refer to [25] and [26]). We notice that the average
velocity in quasicrystals is greater than that in the periodic
crystals, which reveals that the quasicrystals are more brittle
than the crystals.

Next let us look at the average velocity under different
loads in quasicrystals. The above described procedure was
conducted, keeping the same geometry and material constants.
With various loads, the relation between average velocity and
crack growth is constructed in figure 7. The average crack
velocity smoothly increases with increasing loads. We think
this is understandable: because the time to reach the stress
criterion is shorter as the load increases, the velocity is greater.

7



J. Phys.: Condens. Matter 20 (2008) 295217 A-Y Zhu and T Y Fan

250 255 260 265

Time (µs)

270 280 285275 290 295 300

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 p
ro

pa
ga

tio
n 

di
st

an
ce

Figure 8. Normalized crack growth size (a − a0)/a0 of crack tip
versus time for different load levels.

Also, the picture of the growing crack, shown in figure 8,
presents many steps when the load level grows. From the slope
of the step, that is the speed of the crack spreading, the velocity
in the process of the propagating is changing. Nonetheless, the
alteration is not completely evident, as the curves in the figure 8
approximate to a straight line. The velocity remains invariable
on the whole.

However, there is no observation experimentally for fast
crack propagation, though Ebert et al [27] have made some
observations by scanning tunneling microscopy for quasi-static
crack growth. Because the fast propagation and quasi-static
crack growth belong to two different topics, the comparison
cannot be made.

Finally, the crack opening displacement, describing what
the crack surface of the sample looks like, is shown in figure 9.
The three curves in the figure are all like elliptic arcs.

7. Conclusion and discussion

A new version of the dynamic response of quasicrystals
based on the argument of Bak as well as the argument of
Lubensky et al is suggested; it can be seen as an elasto-/
hydrodynamics model for the material, which can also be
seen as a collaborating model of wave propagation and
diffusion. This model is more complex than that of the pure
wave propagation model in [4–10]; the analytic solution is
not available, so we develop the finite difference procedure.
Numerical results check the validity of wave propagation
behavior of the phonon field, and diffusive behavior of the
phason field, the interactions between phonons and phasons are
also recorded but are quite complicated.

The formulas are applied to the analysis of dynamic
initiation of crack growth and fast crack propagation for
two-dimensional decagonal Al–Ni–Co quasicrystals: the
displacement and stress fields around the tip of stationary
and propagating cracks are revealed; the stress presents a
singularity of order r−1/2, in which r denotes the distance
measured from the crack tip. For the fast crack propagation,
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Figure 9. Geometry of the crack opening at three different time steps
with p0 = 1 Mpa.

which is a nonlinear problem—moving boundary problem,
one must provide an additional condition for determining
the solution. For this purpose we give a criterion for
checking crack propagation/crack arrest based on the critical
stress criterion. Application of this additional condition for
determining the solution has helped us achieve the numerical
simulation of the moving boundary value problem and reveal
the crack length–time evolution.

The elasto-/hydrodynamics of icosahedral Al–Pd–Mn
quasicrystals is a more interesting topic than that of decagonal
Al–Ni–Co quasicrystals, but the equations and boundary
conditions are more complicated; the numerical results will be
reported subsequently.

The present work is carried out at macroscopic scale,
i.e. in micrometers and microseconds in space and time.
The dynamic instability of a propagating crack revealed by
Fineberg et al [28, 29], Langer [30] and Ching et al [31] is
a very important topic for the crack problem for a conventional
material, and is also a very important topic for the crack
problem of a quasicrystalline material; we are doing the
work by combining the finite difference method and molecular
dynamics simulation: the results will be reported in subsequent
work.

Finally, we must point out that the order of magnitude of
the results of the phason field seems much smaller than that
of the phonon field; this is by no means always so: one of
the reasons for this lies in the choice of boundary conditions
in the present formalism, where the boundary conditions
corresponding to phason field are taken to be zero (due to
lack of measured data for generalized tractions, the simplest
treatment is assuming the stress boundary of phason to be
zero). Otherwise, if we put nonzero boundary conditions
for the phason field, the computation shows that the order of
magnitude of the phason variables will be greater.
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